您好,

88门户网公众号

88门户网 - 微信公众号

手机版

88门户网 - 手机版

橡胶电缆线芯铜丝发黑是为什么?橡胶粘铜丝又是为什么?

   2018-04-26 微信婷婷890
核心提示:一.从廿世纪五十年代初开始以及更早一些时候,以天然和丁苯橡胶并用为主体的绝缘橡胶直接包覆在铜导体线芯上,并进行蒸汽硫化(当时大多数厂家使用硫化缸)成为橡皮绝缘线芯,这是生产橡胶电缆的第一步,第二步是将
一.从廿世纪五十年代初开始以及更早一些时候,以天然和丁苯橡胶并用为主体的绝缘橡胶直接包覆在铜导体线芯上,并进行蒸汽硫化(当时大多数厂家使用硫化缸)成为橡皮绝缘线芯,这是生产橡胶电缆的第一步,第二步是将绝缘线芯成缆后,再挤包一层护套橡胶并进行蒸汽硫化(仍使用硫化缸),最后就是我们看到的橡胶电线电缆产品。在使用时将护套橡皮剥去一段,再将绝缘橡皮剥去一段,以便与插头或者与电源连接。这时就会发现去掉绝缘橡皮的铜丝发黑,有时还有一部分橡皮粘在铜丝上,这就是困扰电线电缆行业达五十多年的重大质量问题。虽然有关单位进行了一系列的研究与改进,但这一问题至今还没有从根本上得到解决。
二.历史的回顾众所周知,廿世纪五十年代,由于我国的合成橡胶工业十分落后,天然橡胶也没有出来,所以全部依靠进口。在电线电缆橡胶绝缘配方中,有很大一部分厂是以天然橡胶为主体材料,以后逐渐加入一定比例的丁苯橡胶,在硫化系统方面开始用硫磺硫化。由于铜丝发黑问题,学习前苏联的经验,使用硫载体(即我们正在使用的硫化促进剂TMTD )进行硫化,硫化促进剂TMTD 的化学名称是二硫化四甲基秋兰姆,分子量是258,结构式如下: S S H 3C ‖ ‖ CH3 >N-C-S-S-C-N < H3C CH3 白色或灰白色粉末无味、无毒,但有刺激作用。在0.3-0. 35Mpa 的蒸汽压下,也就是在温度为143-148℃时,TMTD 分子结构中的两个相联的S 会放出一个活性的游离硫,使不饱和的天然橡胶和丁苯橡胶分子链交联,从线型分子变成网状结构,使橡胶硫化,也就是我们通常讲的无硫硫化橡胶(不使用硫磺)。绝缘橡胶具有一定的弹性和标准要求的物理机械性能、老化性能和电气性能,符合电线电缆绝缘线芯的使用要求,这就是廿世纪五十年代的情况。到了廿世纪六十年代初,广大电线电缆用户,如花线、橡胶布电线、矿用电缆和船用电缆用户,不断向电线电缆制造厂家提出铜线发黑和绝缘橡胶部分粘铜丝的问题。这些问题不仅影响电线电缆的外观质量和施工,而且因铜丝表面一层发黑(主要是氧化铜)会使铜导线的电阻增加。铜丝由于发黑而变脆,经过多次弯曲后就会断芯,折断的铜丝在弯曲变形中会刺穿绝缘橡皮,造成绝缘线芯之间的短路和击穿。上述问题的不断出现,引起上海电缆研究所领导的高度重视,组织工程技术人员成立了课题组,通过深入工厂车间和用户访问,了解实际情况,翻阅国外资料(包括专利),借鉴国外经验。通过大量的试验,发现了钝化剂MB 防老剂和抗铜抑制剂DNP 防老剂的组合,可抑制与铜丝接触的橡皮发粘和延缓铜线的发黑。 1964年,上海电缆厂首先将防老剂MB 和DNP 作为绝缘橡胶(天然胶和丁苯胶并用)的主要防老剂,硫化剂是促进剂TMTD ,发黑问题仍时常出现。为了满足用户的要求,在铜线外包一层0.03mm 的电话纸, 这样由于纸的隔离作用,橡胶粘铜线的问题解决了。但铜线发黑的问题没有解决,任何高分子材料制成的隔离层都无法起到真正的隔离作用。绝缘橡胶硫化时产生的物质,照样穿过0.03mm 的纸层进入铜丝中,不仅使铜丝表面,而且使铜丝内部变色。开始发红,时间长了也会发黑,只是情况比不包纸要好一些。 1955年美国聚硫化学公司生产出硫化剂VA-7,是脂肪基多硫化物,其结构式为: -R-(S)n-R 式中:R :脂肪族醚;n :含硫数,平均4.5。据说对铜无腐蚀作用,解决了电缆工业中游离硫对铜线腐蚀的难题。在上海南洋电线电缆厂首先试用。六十年代中期,国内锦西化工厂首先生产了硫化剂VA-7,由于橡胶助剂的发展和配套供应,南洋电缆厂不仅在天然丁苯绝缘橡皮配方中使用,同时还应用在天然丁苯胶护套橡皮配方中。铜线发黑问题得到了一定程度的改善,但同时带来了胶料的门尼焦烧比TMTD 快和工艺加工安全性的问题。在结构上由于护套橡皮使用VA-7,而不是大多数厂家使用的硫磺作硫化剂,这样就避免了护套橡皮中的游离硫向绝缘橡皮迁移,最后迁移到铜线表面,导致铜线芯发黑。上海电缆厂也在七十年代应用VA-7硫化剂代替传统的硫化剂TMTD ,在天然丁苯胶绝缘橡皮配方中使用,使铜线发黑情况有所好转和改善,但配料不方便,是粘度很高的液体,胶料的门尼焦烧时间比较快。在橡胶电缆加工过程中,发现绝缘橡胶的弹性小,永久变形大,连续硫化生产出来的橡皮绝缘线芯,经过成缆加工、挤橡胶连续硫化以后,将护套剥去后观察发现,每根绝缘线芯都不是原来的圆形,而随着成缆压型后变了型。原来使用TMTD 作硫化剂时,这种变形却要好得多。从加工工艺和橡胶电缆的成品性能要求出发,大多数的电线电缆厂家仍然将TMTD 作为天然丁苯胶绝缘橡胶的主硫化剂并采用隔离层。
因此,关于天然丁苯胶绝缘橡胶发粘和铜线发黑的问题仍没有解决好。在廿世纪九十年代,生产空调机接插线(即YZW 产品)时,对橡胶电线电缆的表面质量要求非常高。为了解决铜线发黑的问题,一些小厂用过氧化物DCP (化学名称:过氧化二异丙苯)来硫化天然丁苯胶绝缘橡胶。因为这种硫化剂本身没有硫元素,所以在硫化过程中不会放出游离硫,对铜线发黑的问题是解决了。但DCP 的硫化是通过夺取橡胶分子链上的H 原子产生自由基,与另一分子链上因脱H 而出现的自由基结合而形成交联键,对饱和橡胶如氯化聚乙烯、二元乙丙胶以及有少量双链的三元乙丙胶比较适合,而对高不饱和的天然和丁苯胶来说是不合适的。在高温蒸汽压下,过氧化物DCP 不仅打开这两种胶的双链使分子链相互交联,而且还会将橡胶分子链中的双键打断,使长链分子变成短链的小分子,使橡胶趋向老化,对天然橡胶表现的更为明显,将使橡胶的老化大大加速。如在挤绝缘橡胶连续硫化后,绝缘橡皮的强力和伸长率均超过标准指标的要求,当绝缘线芯成缆以后再挤氯化聚乙烯(简称CPE )护套橡胶连续硫化以后,再测绝缘橡胶的强力和扯断伸长率时,性能下降50%,拉伸强度和扯断伸长率均达不到标准指标的要求。虽然调整CPE 配方,可以使绝缘橡皮的强力和扯断伸长率达到标准指标的要求,但是这种橡胶电缆如存放在仓库里半年以后,由于DCP 的分解物继续对天然胶和丁苯胶作用,会出现七根绝缘线芯粘在一起的现象。这说明天然胶和丁苯胶已严重降解。还有一种情况,就是当剥开护套后,有少数几根绝缘线芯表面泛黄,弯曲时就会发现表面硬皮已经龟裂,如同在老化箱中长期老化后的试片。因此,无论在教科书上还是在橡胶工业的生产实践中,都不宜将硫化剂DCP 作为天然胶和丁苯胶的主硫化剂。还有一些厂家,使用VA-7和DCP 两种硫化剂,再配入一些促进剂,对铜线发黑问题有比较大的改善,按现在的绝缘橡皮标准GB7594.3-87进行老化,性能还可以,但如果提高温度,按过去的标准:120℃老化四天,则其性能下降非常大,不及我们现在使用的TMTD 的老化性能。
综上所述,在使用天然胶和丁苯胶并用的绝缘橡皮配方中,使用什么硫化剂和促进剂的问题还没有解决好,所以,关于绝缘橡皮发粘和铜线发黑的问题,最多是有所改善。
三. 绝缘橡皮发粘和铜丝发黑原因的探讨从廿世纪六十年代开始,上海电缆研究所就组织了有关技术人员,针对绝缘橡皮发粘和铜丝发黑原因进行技术攻关,曾召开过专题讲座,还在《电线电缆》杂志上发表过一些文章,后来各地的电线电缆厂根据自身的条件,在上缆所科研的基础上,采纳了防护体系的配合,即防老剂MB 和防老剂DNP 的配合,比例为:MB2份和DNP0.5份,而硫化剂仍然是传统的TMT D 体系。只有上海南洋电缆厂首先采用VA-7硫化剂代替传统的TMTD ,再配合一些促进剂ZDC 和DM ,对改善铜线发黑有比较明显的效果,但永久变形较大,特别是橡胶电缆生产出来以后,剥开橡皮护套就会发现成缆线芯有压扁的现象产生。因此,这个方法也没有推广开来。铜丝发黑的原因是多种因素造成的,不仅仅是橡皮的配方问题,还与铜丝本身所处的状态、橡胶加工工艺、橡胶硫化工艺、电缆的结构、护套橡胶配方、生产环境等诸多因素有关。
3.1橡皮发粘和铜丝发黑的原因分析
3.1.1铜丝本身的原因在廿世纪五十到六十年代,国内大多数厂家均使用普通铜杆,铜含量为99.99%,均为有氧铜杆,生产方法都是铜锭加热后经多道压延后制得黑色铜杆,经过大、中、小拉将铜杆制成比较细的铜丝。因为铜本身不是无氧铜,在加工过程中铜丝表面难免出现氧化。到了廿世纪八十年代,国内引进了无氧铜杆的先进生产技术,以及国内自行开发的无氧铜杆生产技术,使整个电线电缆行业均用上了无氧铜杆,这无疑是改善了铜丝的发黑问题。但由于对铜杆的加工,特别是韧炼工艺的掌握以及加工好的铜线芯存放的条件不好,使铜线芯本身已有轻微的氧化,这也是铜丝发黑的原因之一。
3.1.2橡胶配方的原因廿世纪五十年代,橡胶绝缘均采用天然胶和丁苯胶并用配方。由于绝缘橡皮直接与铜线接触,所以就不能直接使用硫磺作硫化剂,即使用很少的硫磺也会使铜线发黑。必须使用一些能够分解出游离硫的化合物,如前面提到过的促进剂TMTD 、硫化剂VA-7,同时还要配合一些硫化促进剂来提高硫化速度和硫化程度,确保绝缘橡皮的物理机械性能和电气性能。但从绝缘橡皮的弹性、强力和永久变形看,都不如加有硫磺的橡皮(如果不考虑铜丝发黑的话)。几十年的实践已经证实TMTD 无法解决铜丝的发黑问题。另外,绝缘橡皮要有各种颜色,红、蓝、黄、绿、黑是基本颜色,这些颜色的出现也会促使橡皮发粘和铜丝发黑。配方中的主要填充剂是轻质碳酸钙和滑石粉,由于价格的关系,有些厂家为了降低成本,用价格特别便宜的碳酸钙和滑石粉,这些填充剂粒子粗、游离碱的含量大、杂质多,所以物理机械性能比较差,电性能不好,还容易造成铜丝发黑。还有的厂用活性超细碳酸钙来提高绝缘橡皮的物理机械性能,而活性钙多数是用硬脂酸来处理的,这种酸也是促使铜丝发黑的原因。硫化剂VA-7的使用,可以改善铜丝发黑,但由于硫化程度不够,橡皮的永久变形大,会造成橡皮发粘。特别是加入促进剂ZDC 以后,提高了硫化速度,为了防止焦烧,还要加入促进剂DM 来延缓焦烧时间。从促进剂ZDC 的结构看,是在TETD 结构中两个相连接的硫中间接上一个金属锌,结构式为: S S H5C2 ‖ ‖ H5C2 >N-C-S-Zn-S-C-N < H5C2 H5C2 与TETD 结构式 S S H5C2 ‖ ‖ H5C2 >N-C-S-S-C-N < H5C2 H5C2 十分接近,在配方中还无法避开和秋兰姆相似的结构铜丝发黑可能时间略长一点,但没有从根本上解决。
3.2从电线电缆结构分析
3.2.1铜的催化老化是橡皮发粘的重要原因前苏联电缆科学研究院试验证明:硫化过程中铜从与橡胶接触处渗入到绝缘橡胶中,1.0-2.0mm 厚度的绝缘橡皮含铜0.009-0.0027%。众所周知,微量铜对橡皮有极大的破坏作用,也就是我们通常说的重金属对橡胶的催化老化。在绝缘硫化过程中,秋兰姆析出若干游离硫与铜反应,形成活性含铜基团: CH3 │ CH2-CH-C-CH2- │ │ S S │ │ Cu Cu 在老化时,较弱的-S-S-键断裂,形成活性含铜基:Cu-S-,它与橡胶作用,同时与氧作用,破坏橡胶的长键分子,使橡胶变软变粘,是低分子链的组合。法国橡胶研究院研究发粘重现问题时也指出:如果橡胶中含有有害的金属,如:铜、锰等重金属盐类,那么不管促进剂的种类,均会发生橡胶发粘现象。
3.2.2橡套电缆中硫磺向绝缘橡皮和铜线表面的迁移前苏联科学家应用放射性同位素证实了电缆护套橡胶中硫扩散的可能性。以天然橡胶为基的硫化胶中,在130-150℃的温度下,游离硫的扩散系数约为10-6cm2/s。连续硫化的生产厂,硫化护套橡胶时,温度在185-200℃之间,这个扩散的系数就更大。由于橡套游离硫的扩散,改变了秋兰姆橡胶的结构,可能形成多硫键。这些多硫化合物通过化学分解和化合实现迁移,即" 化学扩散" 。由于迁移的结果,不仅可改变绝缘橡皮的结构,降低其耐热性,而且硫与铜表面反应,形成硫化铜和硫化亚铜,导致铜线发黑。反过来,硫化铜和硫化亚铜加速橡胶的老化,又导致发粘现象的发生。
3.3加工工艺方面的原因
3.3.1橡料加工方面的原因在以天然胶和丁苯胶并用为基础的绝缘配方中,天然胶需要通过塑炼来提高橡胶的可塑性。有些大厂为了产量,用密炼机塑炼,还要加入少量的化学增塑剂--促进剂M 来提高塑性。如果塑炼温度和生胶滤橡时的温度控制不好,出现140℃以上的高温,当生胶放到开炼机上缓慢通过滚筒,而上面的积胶由于受到热氧和促进剂M 的同时作用,会发现橡胶表面好象涂了一层油,实际上是橡胶分子在化学增塑剂的促进下断链比较严重,产生了比较软和粘的较小分子量橡胶。虽然后来与丁苯胶并用混炼出绝缘橡料,这些小分子量的天然胶被均匀地分散在胶料中,这些胶料挤包在铜丝上进行连续硫化后,当时可能看不出什么问题,但已经为橡胶粘铜丝埋下了一个隐患,也就是说,这些小分子量的天然胶将首先出现局部粘铜丝现象。绝缘橡皮加硫化剂和促进剂的工艺也十分重要。有些小厂在开炼机上加硫化剂,就是将装有硫化剂的罐子,在滚筒的中部倒入,中间很多,而两边较少。当硫化剂吃入橡皮中,翻三角的次数较少,会使硫化剂在橡料中分布不均匀。这样在挤包连续硫化时,含硫化剂比较多的地方很容易出现铜丝发黑现象,在发黑的地方时间一长,还会出现橡皮粘铜丝的现象。
3.3.2绝缘橡皮硫化方面的原因有些企业为了追求产量,连续硫化管只有60米长,蒸汽压力是1.3Mpa, 而硫化速度要开到120米/分,这样绝缘橡胶在管中的停留时间只有30秒。橡皮本身是热的不良导体,绝缘线芯表面温度大于190℃,当温度传热到与铜线接触的里层橡皮时,又被铜线吸热,铜线升温到与里层橡皮温度接近时,硫化的橡皮电线芯已经出硫化管了。这样里层橡皮温度比较低,大约为170℃,停留只有几秒钟就出硫化管,进入冷却和收线,绝缘橡皮就会硫化不足。为了达到足够的硫化。促进剂TMTD 的用量(作硫化剂用)高达3.4%,过量的硫化剂,在硫化过程中放出的游离硫也多,除供交联橡胶分子外,还有多余的游离硫。这是促使铜线表面发黑的原因。无论是欠硫还是过硫,都是促使橡皮发粘的原因。
五金
 
举报收藏 打赏 评论 0
 
更多>同类新闻资讯
推荐图文
推荐新闻资讯
点击排行
(c)2008-2023 88号建材网 北京斑马家科技有限公司