您好,

88门户网公众号

88门户网 - 微信公众号

手机版

88门户网 - 手机版

不饱和聚酯树脂合成技术

   2018-05-24 微信蒙蒙1590
核心提示: 由不饱和二元酸、饱和二元酸组成的混合酸与二元醇起反应制成线型聚酯,再与不饱和单体交联固化后,即成体型结构的热固性树脂即不不饱和聚酯树脂一般是由不饱和二元酸、饱和二元酸和二元醇缩聚而成的线型聚合物,在
 由不饱和二元酸、饱和二元酸组成的混合酸与二元醇起反应制成线型聚酯,再与不饱和单体交联固化后,即成体型结构的热固性树脂即不不饱和聚酯树脂一般是由不饱和二元酸、饱和二元酸和二元醇缩聚而成的线型聚合物,在树脂分子中同时含有重复的不饱和双键和酯键。由于这样得到的不饱和聚酯树脂是一种固体或半固体状态,而且不能很好地交连成为性能良好的体型结构产物,因此在生产后期,还必须经交联剂苯乙烯稀释形成具有一定粘度的树脂溶液。实际上使用的不饱和聚酯树脂就是这种树脂溶液,使用中再加入固化剂等物质,使苯乙烯单体和不饱和聚酯分子中的双键发生自由基共聚反应,最终交链成为体型结构的树脂。而由不饱和二元酸、饱和二元酸组成的混合酸与二元醇起反应制成线型聚酯,再与不饱和单体交联固化后,即成体型结构的热固性树脂即不饱和聚酯树脂胶粘剂。它主要用于制造玻璃钢,也可用来粘接陶瓷、玻璃钢、金属、木材、人造大理石和混凝土等。还有就是不饱和聚酯树脂胶粘剂的接缝耐久性和环境适应性较好,并有一定的强度。不饱和聚酯树脂的整个固化过程包括三个阶段:凝胶、定型及熟化。具有粘性的可流动的不饱和聚酯树脂,在引发剂存在下发生自由基共聚合反应,而生成性能稳定的体型结构的过程称为不饱和聚酯的固化。发生在线型聚酯树脂分子和交联剂分子之间的自由基共聚合反应,其反应机理同前述自由基共聚反应的机理基本相同,所不同的它是在具有多个双键的聚酯大分子(即具有多个官能团)和交联剂苯乙烯的双键之间发生的共聚,其最终结果,必然形成体型结构。不饱和聚酯树脂的整个固化过程包括三个阶段:凝胶从粘流态树脂到失去流动性生成半固体状有弹性的凝胶。定型从凝胶到具有一定硬度和固定形状,可以从模具上将固化物取下而不发生变形。熟化具有稳定的化学、物理性能,达到较高的固化度。
一切具有活性的线型低聚物的固化过程,都可分为以上三个阶段,但由于反应的机理和条件的不同,其三个阶段所表现的特点也不同。不饱和聚酯树脂的固化是自由基共聚反应,因此具有链锁反应的性质,表现在三个阶段上,其时间间隔具有较短的特点,一般凝胶到定型有时数个小时就可完成,再加上不饱和聚酯在固化时系统内无多余的小分子逸出,结构较为紧密,因此不饱和聚酯树脂和其他热固性树脂相比具有最佳的室温接触成型的工艺性能。由于不饱和聚酯树脂结构的不同,其在性能上也有很大差异。反应活性高的树脂,其力学性能优良,耐热性也好。因此,反应活性的高低在一定程度上反映了聚酯树脂性能的好坏。影响不饱和聚酯树脂反应活性的因素有以下几个方面。1、不同交联剂的影响不饱和聚酯树脂的交联剂多为不饱和烯类化合物。
交联剂的结构会大大影响交联剂的反应活性,一般说来有三个方面因素:共轭效应、电子效应、位阻效应。共轭程度高,单体的反应活性高,容易发生交联反应;单体的取代基吸电子性越强,其活性越大;取代基越多,反应活性越低。ɑ-甲级苯乙烯比苯乙烯的反应活性低的多,甲基丙烯酸的反应活性比丙烯酸的反应活性低,甲基丙烯酸酯的反应活性也比丙烯酸酯低。除此以外,交联单体结构会大大影响聚酯的性能如加工性、水溶性、光学性能、热性能、电性能等。不饱和聚酯中双键的反应活性是很低的,但与不饱和烯类交联单体共聚反应活性较高。不同交联单体的反应活性也不相同。一般不饱和聚酯与交联单体苯乙烯共聚反应的速率是不饱和聚酯均聚速率的20-30倍,因此不饱和聚酯多选用与苯乙烯一起使用。而如用甲基丙烯酸甲酯与不饱和聚酯共聚,由两种单体的竞聚率可知,甲基丙烯酸甲酯的均聚倾向较大,不饱和聚酯的共聚倾向较大,其结果在共聚物中甲基丙烯酸甲酯的重复链结较多,随反应进行甲基丙烯酸甲酯很快消耗完,最后会有较多的不饱和聚酯没有进行共聚。因此用甲基丙烯酸甲酯作交联单体固化的不饱和聚酯树脂的网络结构不如用苯乙烯作交联单体来得紧密。
ɑ-甲基苯乙烯因其反应活性较低不能单独使用。若加入一些替代苯乙烯,可以降低固化时的最高放热峰温度,减少收缩率。2、苯乙烯交联剂用量的影响苯乙烯由于活性高、反应快、性能好、价格低,是不饱和树脂应用最广的交联剂。其用量影响不饱和聚酯中双键的百分数。通常苯乙烯含量的提高,有利于聚酯双键反应百分率的提高。当苯乙烯与聚酯双键摩尔比在1.6-2.4之间时,树脂具有较高的双键反应百分率,即交联密度高,具有良好的综合性能。通过实验证实,两个不饱和聚酯分子链间单体苯乙烯的交联重复单元为1-3个。工业上不饱和聚酯树脂中的苯乙烯的含量一般在30%-40%之间。这一含量的确定是根据成型工艺的操作性能和树脂固化后的性能确定的。实践表明,这一含量基本上能在这两者间取得综合平衡性能,使固化树脂的网络结构较紧密。3、不饱和聚酯分子链中双键密度的影响不饱和聚酯树脂反应活性通常以其中所含不饱和二元酸的摩尔数占二元酸总摩尔数的百分数来衡量。不饱和酸占70%以上为高反应活性;60-30%为中反应活性;30%以下为低反应活性。
不饱和聚酯分子链中双键含量越高,聚酯树脂的反应活性越高,达到完全固化的时间越短。高反应活性的聚酯与苯乙烯交联密度高,提高了热变形温度。低反应活性的聚酯与苯乙烯交链密度低,体积收缩率低,适用于浇铸制品。4、不饱和聚酯中双键顺、反结构的影响不饱和聚酯中双键的顺、反结构,其反应活性不同。通常反式比顺式反应活性高,如富马酸酯与乙烯基单体反应要比马来酸酯与乙烯基单体的反应快40倍。顺式双键在一定条件下可以转化为反式双键。在较高温度和较长时间条件下,转化率较高。 聚酯结构中有仲醇,其顺式向反式的转化率也要高。5、不饱和聚酯树脂中阻聚剂及其他添加剂的影响为了不饱和聚酯树脂的稳定,常在其中加入阻聚剂或缓聚剂。这是一种能与链自由基反应形成非自由基或不能再引发的低活性自由基,使交联固化速率降低为零的物质。因此,低反应活性的树脂有可能因为其中加入的阻聚剂量很少而显得反应活性很高,而高反应活性的树脂也可能因其中加入了过量的阻聚剂而变得不甚活泼。另外其他添加剂例如:阻燃剂、色浆、低收缩剂、各种填料的加入,引入了磷、卤、金属离子或其他因素,都会影响树脂交链反应活性。6、固化剂、阻聚剂用量的影响通过相关实验表明,固化剂用量越大,固化越快,放热峰越高。
不同的阻聚剂和不同的用量固化效果也为不相同。因此在树脂制造和使用过程中,掌握好阻聚剂、固化剂的合理匹配十分重要。不饱和聚酯树脂的交联固化机理主要分三个阶段:链引发、链增长、链终止。现将三个阶段分别论述如下:链引发不饱和聚酯树脂可用引发剂进行链引发。引发剂是容易分解成自由基的化合物,分子结构上具有弱键,在热或辐射能的作用下,沿弱键裂解成两个自由基,产生的自由基攻击不饱和聚酯树脂形成单体自由基,从而引发树脂固化。
1、引发剂种类引发剂主要是偶氮化合物、过氧化物和氧化-还原体系。从另一角度又可分为有机和无机两大类。过氧化物又可分为氢过氧化物、烷基过氧化物、酰基过氧化物、酮过氧化物、过氧脂类,过氧化物还能与还原剂形成氧化-还原引发体系。氧化-还原体系主要用于不饱和聚酯树脂的常温固化,具有引发活化能低、引发温度低、使用方便的特点。2、引发剂的活性不饱和聚酯树脂固化过程中,引发反应是最关键的一步,控制着固化反应。这主要由引发剂的分解速率来决定。衡量分解速率的指标一般有以下几种:
1)表观活化能 :在一定条件下引发剂分解自由基所需的最低能量。活化能的大小可以用来表示引发剂的稳定性。活化能的值大,不易分解,较稳定。活化能的值小,容易分解产生自由基。过氧化物在还原剂存在下,活化能明显变小,原来要在高温下才能进行的反应,可以在较低温度下进行。不饱和聚酯树脂常温固化采用氧化-还原体系,道理就在于此。2)半衰期:在一定温度下引发剂分解一半所需的时间或在一定时间内引发剂分解一半所需的温度。时间长、温度高均表示引发剂分解反应活性低。有机过氧化物的半衰期越短,分解速率越大,其活性越强。在树脂中、高温固化时,引发剂的半衰期是一个十分重要的指标。3)临界温度:指引发剂分解产生大量自由基时所需的最低温度。临界温度以下分解很慢,而达到临界温度以上分解很快,引发速度明显提高,固化反应明显放热。作为不饱和树脂引发剂的过氧化物,其临界温度大致都在60-130℃范围,如低于60℃,在室温下就很不稳定,不易作聚酯的引发剂。4)活性氧含量:指活性氧占过氧化物引发剂分子总量的百分比。这一指标只用来评定过氧化物的质量,表示过氧化物纯度的高低和产生自由基数量的大小,不能用来比较引发剂的活性。引发剂的引发效率是指用于引发固化形成链自由基的量占总引发剂耗量的分数。引发效率除上述引发剂本身指标的影响外,还要考虑引发剂所在体系和外在条件的影响。例如:引发剂自身的诱导分解、溶剂的笼蔽效应等都会使引发效率小于1。
3、引发剂的选择不饱和聚酯树脂的固化选用什么样的引发剂,取决于使用要求。1)根据固化温度选择适当活化能和半衰期的引发剂,使自由基形成的速率适中,满足使用要求。2)引发剂的用量对固化速度影响很大。量大了,放热很快,易失控,且形成的固化物分子量也小,使力学性能变差。量太小,会造成固化不完全,甚至会永久的欠固化。引发剂用量一般为树脂量的1%左右。对氧化-还原体系,因产生的自由基近一半用于聚合,另一半则还原成负离子或其它产物,故引发剂用量应为树脂量的2% 。链增长当不饱和聚酯和乙烯基单体(如苯乙烯)中的双键引发后就进行着链增长反应,形成网络大分子。在这一过程中同样有四个增长反应进行竞争,影响着共聚物中两种单体链节的组成与排列。而其中的一个重要参数为两种单体的竞聚率r1 及 r2。我们希望得到一个均匀的交替共聚的交联网络。
一般认为,分子量不高的线性不饱和聚酯与苯乙烯共聚时,其活性接近于反丁烯二酸二乙酯,苯乙烯与反丁烯二酸二乙酯的竞聚率r1 及 r2分别为0.3及0.7,两值均小于1,在链增长过程中具有良好的共聚倾向,可以形成均匀网络,获得固化树脂的合适性能。链终止不饱和聚酯树脂的链终止反应主要是双基终止,用苯乙烯作交联单体时,偶合终止是主要倾向。线型不饱和聚酯分子链上含有多个双键,可与苯乙烯发生共聚,当共聚反应到一定程度时会形成三向网状结构,出现凝胶现象,此时常伴随着自动加速效应,使聚合速率剧增,体系急剧放热,温度可升高至150-200℃,温度升高可进一步促使共聚反应,使网状结构更为紧密,同时紧密的结构也限制了单体的扩散运动速度,此时链自由基消耗殆尽,使聚合速度下降,聚合物链不再增长。但在不饱和聚酯树脂固化网络里仍然存在着长寿命自由基,在一个相当长的时间里可以继续进行反应。
五金
 
举报收藏 打赏 评论 0
 
更多>同类新闻资讯
推荐图文
推荐新闻资讯
点击排行
(c)2008-2023 88号建材网 北京斑马家科技有限公司